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The Benjamin Shock Tube Problem in KULL 
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The goal of the EZturb mix model in KULL is to predict the turbulent mixing 
process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz 
instabilities. In this report we focus on a simple example of the Richtmyer-Meshkov 
instability (which occurs when a shock hits an interface between fluids of different 
densities) without the complication of reshock. The experiment by Benjamin et al. [1], 
involving a Mach 1.21 incident shock striking an air / SF6 interface, is a good one to 
model and understand before moving onto shock tubes that follow the growth of the 
turbulent mixing zone from first shock through well after reshock [2-3].    
 

In Kull, the EZturb k- ε model is tightly coupled to the Lagrange hydro, and so 
the actual mix model equations we solve when the model is active are: 
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Here, 
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r
,  and Ir are the volume fraction, thermodynamic density, and specific 

internal energy (by mass) for material r. Sij is the strain rate tensor, and τij is the turbulent 
shear stress tensor, for which we use the following Boussinesq approximation: 
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The turbulent viscosity includes the effects of both shear and buoyancy and takes the 
form: 
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The unlimited form of the buoyant production term is given by: 
 

! 

P = "
µt

#$$
2
%p & %$       

 
and the way this term manifests itself in the internal energy equation is: 
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The model constants are C1ε, C2ε, C3ε, σM, σU, σK, σZ, σρ, Cµ, and Cω.  Also, δIso, δAniso, and 
δI,diss are on/off switches that can be set to 1 or 0.  To simplify the form of the turbulent 
viscosity and the Reynolds stress, we will set Cω= 0 and δAniso = 0 for this problem. 
 
 We are given that the incident Mach number is 1.21 and that the ambient densities 
for the air and SF6 are .9524e-3 g/cm3 and 4.8611e-3 g/cm3. The ambient pressure is also 
given as .8 bars. With these values and the standard 1D shock relations [4-5], we can 
compute shocked values for the air (we assume γair = 1.4). Thus the shocked air density, 
pressure, and velocity are found to be 1.294e-3 g/cm3, 1.233e6 dynes/cm2, and 1.096e4 
cm/sec. A spatial domain of 70 cm was selected, since this length ensures that the left 
Lagrangian moving boundary never gets too close to the mixing zone and that the 
reflected shock off the rigid wall on the right never approaches the mixing zone. In fact, 
by 819 µsec (which corresponds to the end of the experiment), the incident shock has still 
not reached the far wall nor has the left moving shock caught up to the Lagrangian 
boundary. Therefore, 70 cm is a conservative length to use for this problem. 
 
 Figure 1 shows a comparison of the mixing zone widths from a coarsely resolved 
KULL calculation (with 100 zones) to the experimental data. The experimental widths 
were obtained by examining Schlieren images, while the ones in the KULL calculation 
were calculated by interpolating the volume fraction profile for SF6 between fraction 
values of .05 and .95. The agreement is quite good, although there is a slight over-



prediction at early times and a slight under-prediction at late times. The experimental data 
is only available between ~300 µs and 750 µs.  
 
 Figure 2 shows the same data as Figure 1, but also adds the mixing zone widths 
obtained by interpolating between the 99% and 1% values in volume fraction. It is 
evident that the value of the mixing zone width can vary significantly, depending on the 
cutoffs used to define it, especially if the volume fraction distribution has long tails. For 
this reason, we will use the 95% and 5% cutoffs to compare to the experimental data (and 
thus stay away from outliers) and fine-tune the model coefficients, but we will also show 
the 99% and 1% results on occasions where it will prove instructive. 
 
 Figure 3 shows a preliminary convergence study using meshes with 100, 200, and 
400 zones, where we use the 95% and 5% volume fraction cutoffs. The results are 
somewhat mixed at early times, but at late times it appears as though we may be close to 
convergence, as the results for the 200 zone and 400 zone run are nearly identical. Figure 
4 is identical to Figure 3, except now we use the 99% and 1% cutoffs. This figure is more 
consistent with what one would expect from a convergence study, namely that the widths 
decrease with increasing resolution (presumably, because the volume fraction profiles are 
becoming steeper under mesh refinement). The results in this figure indicate that 400 
zones may not be sufficient. 
 
 Figure 5 shows the SF6 volume fraction profiles at 819 µs. This figure helps 
explain why the results from the 100 zone calculation are so scattered. That is, there are 
only 4 mixed zones at late time in the coarsest calculation, and so we are more subject to 
interpolation problems. This figure also confirms our suspicions that the 400 zone 
calculation is not fully converged (at least, we cannot tell without performing higher 
resolution runs).  It is also encouraging that the mixing region is better resolved as the 
zoning increases, since this means that at some point we should achieve a converged 
solution.  
 
 Running more than 400 zones on a single processor is starting to approach the 
diminishing returns limit, and so it is worth verifying that parallel runs give the same 
results as their serial counterparts. In this manner, we can continue to increase the 
resolution up to 1600 zones or higher. Figures 6 and 7 show pressure profiles and density 
profiles respectively at 819 µs. The serial run consisted of 100 zones on a single 
processor, while the parallel run used 2 processors with 1 processor having 49 on-
processor zones and the other having 51. The results confirm that identical results can be 
obtained for serial and parallel runs, and also that the python script that manipulates the 
array variables with various MPI calls is treating the data correctly in both cases.  
 
 Figure 8 shows the results of a more comprehensive convergence study where 
serial runs were performed up to 400 zones, a four processor run was used for the 800 
zone calculation, and an eight processor run was employed for the 1600 zone calculation. 
This figure seems to indicate that “converged” results can be obtained with just 400 
zones, since increasing the resolution does not significantly change the mix width. We 
would reach the same conclusion by examining Figure 9. Figure 10 shows the density 



profiles at late time for the 3 highest resolution runs. It is interesting that if we focus on 
the mixing region (which at this time is approximately between 45 cm and 47 cm, it 
appears as though 800 zones are necessary for convergence. On the other hand, if we 
look in the vicinity of the shock front, then we could reasonably argue that we are 
converging much more slowly. Figure 11 confirms that 800 zones are sufficient to 
capture the turbulent mixing process for this problem. 
 
 Figure 12 shows the time evolution of the turbulent mixing zone for the 200 zone 
run in which we use a scalar zone centered Q (artificial viscosity) for one run and the 
CSW (Caramana-Shaskov-Whalen) edge centered Q [6-7] with (on) and without (off) the 
advection limiter for the other two runs. Since the artificial viscosity will only be felt at 
the shock front, and as there is no reshock in this problem, the results in Figure 12 should 
not be too surprising. That is, the mix widths are insensitive to the choice of artificial 
viscosity used in the KULL calculations. Other physics quantities, like density however, 
are sensitive, as Figure 13 makes evident. Here, the scalar Q and CSW Q with the limiter 
turned off give nearly identical results, while there are discernable differences between 
these runs and the one with the CSW Q with the limiter turned on. Basically, the limiter 
makes the shock front less diffusive. 
 
 Some comments are in order for describing the constant values used in the 
preceding calculations. The runs used to generate figures 1-13 used the following values 
for the EZturb model constants and switches: 
 
σM = σρ = .3, σU = .9, σK = 1, σe = 1.3, cµ = .09, cε1 = 1.44, cε2 = 1.92, cε3 = 1.5, δiso = 1, 
δaniso = 0, δI,diss = 1 
 
The initial value for the turbulent kinetic energy was chosen to be 1.44e7 cm2/s2 , which is 
approximately equal to .12 times the shocked air speed squared. Since the initial 
amplitude was experimentally determined to be .24 cm, this value was used in 
conjunction with the kinetic energy to give an initial dissipation rate of 2.28e11 cm2/s3. 
Unfortunately, the only value that is “sacrosanct” is cµ. The other constants can be 
modified within reason. For example, in combustion applications with hydrocarbon 
gases, Prandtl number around .7 are usually observed. Self-similarity arguments also 
suggest that all of the σ’s, with the exception of σε should be equal to each other. With 
these constraints in mind, as well as the fact that the mix widths change dramatically as 
we go from 100 zones to 400 zones, we can again attempt to match the data.  Figure 14 
shows the final result, with the settings now at: 
 
σM = σρ = σU =  σK = .7, σe = 1.3, cµ = .09, cε1 = 1.44, cε2 = 2.14, cε3 = 1.1, δiso = 1, δaniso = 
0, δI,diss = 1. 
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